Exercise 317

For the following problems, state the domain and range of the given functions:

$$
\begin{aligned}
f=x^{2}+2 x-3, \quad & g=\ln (x-5), \quad h=\frac{1}{x+4} \\
& g \circ f
\end{aligned}
$$

Solution

Evaluate $h \circ f$.

$$
g \circ f=g(f(x))=g\left(x^{2}+2 x-3\right)=\ln \left(\left(x^{2}+2 x-3\right)-5\right)=\ln \left(x^{2}+2 x-8\right)
$$

$g \circ f$ is a logarithmic function, and the one thing to know about logarithmic functions is that the argument must be positive.

$$
\begin{gathered}
x^{2}+2 x-8>0 \\
(x+4)(x-2)>0
\end{gathered}
$$

The critical points are $x=-4$ and $x=2$. Test the inequality for values of x in the intervals between these critical points.

Therefore, the domain is $(-\infty,-4) \cup(2, \infty)$. Below is a graph of $g \circ f$ versus x.

The logarithmic function takes on all y-values. Therefore, the range is $\{y \mid-\infty<y<\infty\}$.

